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Finite-Size Effects and Phase Transition in the 
Three-Dimensional Three-State Potts Model 
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The three-state Potts model in three dimensions is studied by Monte Carlo and 
finite-size scaling techniques. Using a histogram method recently proposed by 
Ferrenberg and Swendsen, the finite-size dependence for the maximum of the 
specific heat is found to scale with the volume of the system, indicating that 
the phase transition is of first order. The value of the latent heat per spin and 
the correlation length at the transition are estimated. 
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The knowledge of the finite-size dependence of the various thermodynamic  
quantities in the ne ighborhood  of a phase transition provides a very useful 
way to compute,  using numerical techniques and appropriate  extrapola- 
tion, the properties of infinite systems. In this paper we investigate the 
finite-size effects at a temperature-driven phase transition in the three-state 
Potts  model  in three dimensions. Numerical  simulations here performed 
show that the maximum of the specific heat scales with the volume of the 
system in the thermodynamic  limit, indicating that  the phase transition of 
the model is first order. We use a finite-size scaling form for the behavior  
of the maximum of the specific heat valid for all volumes to estimate the 
latent heat and correlation length at the transition point. 

In an infinite system the singularities observed in a second-order phase 
transition can be traced back to the divergence of the correlation length, 
which leads to the well-known universal behavior characterized by a 
critical region and critical exponents. The singularities occurring in a first- 
order phase transition are, however, due to phase coexistence only. The 
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correlation length does not diverge and is actually of the order of a few 
lattice spacings and discontinuous at the transition. The amount of energy 
necessary to convert one phase into the other is the latent heat of the 
transition. Although the origin of the singularities is physically different for 
both types of transitions, the finite-size effects induce a rounding of the 
transition region and also a shift of the transition temperature, thereby 
leading to ambiguities in the identification of the order of the transition 
and location of the transition point. In a second-order phase transition the 
correlation length is limited by the size L of the system, leading to a scaling 
prediction for the rounding and shifting of the transition temperature to 
decrease as L-l /v and for the maximum of the specific heat to diverge as 
L ~/v. First-order transitions are rounded and shifted, decreasing as L=a, 
with the maximum of the specific heat growing as Ld. ~1) These results can 
be used to diagnose the type of phase transition and to locate the tem- 
perature transition point in the thermodynamic limit by studying finite 
systems. Finite-size effects at a first-order phase transition have recently 
been observed experimentally in adsorbed oxygen filmsJ 2) 

Several attempts have been made both experimentally and theoreti- 
cally to determine the nature of the phase transition in the three-state Potts 
model. Earlier theoretical attempts (3 13/ proved to be difficult to find an 
unambiguous answer to the problem. More recent works, however, have 
shown that the system undergoes a weak first-order phase transition at a 
temperature of about KBT~./J ~- 1.817+0.001. The principal difficulty in 
identifying the nature of the transition was the apparent divergence of the 
correlation length in the vicinity of the transition point, which is a 
characteristic of a second-order phase transition. This problem has recently 
attracted interest because of its similarities with the results for the finite- 
temperature phase transition in QCD. (16~ 

This model has been extensively studied by different techniques. 
Earlier studies were done by high-temperature series analysis, (3~6) mean 
field theories, (7~ renormalization group techniques, (s lo) and Monte Carlo 
simulations.(l~ ~3) Recent calculations have been done mostly by numerical 
simulation using multilattice microcanonical simulation (~4) and Monte 
Carlo techniques. (~s) 

The model investigated here is described by the following Hamil- 
tonian: 

H= - J  Z a(o,,oJ)-HYa(~i, 11 
<i,j> i 

(1) 

where ( i , j )  indicates the sum over all pairs of nearest neighbor inter- 
actions, a, = 1, 2,..., q specifies one of the q states of a spin at site i. The 
symbol 6(ai, aj) is the Kronecker 3-function, J >  0 is the interaction energy 
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between two spins, and H is the applied magnetic field. An extensive review 
of the static properties of the q-state Potts model in all dimensions is found 
in ref. 17. 

By following Ferrenberg and Swendsen ~18)'2 Let us rewrite the 
Hamiltonian (1) in the form 

-flH=K ~ 6 ( a , , a j ) + h ~ h ( a , , 1 ) = - K E + h M  
( i , j )  i 

(2) 

where K is a dimensionless coupling constant in which we have absorbed 
the usual factor of 1/KB T, and h = H/K B T. The partition function can now 
be written as 

Z(K, h) = ~ N(E, M) e x p ( K E +  hM) 
E,M 

(3) 

where N(E, M) is the number of states for the system with energy E and 
magnetization M. The probability distribution of E and M for a given 
temperature and field is given by 

P(K,h)(E, M) = N(E, M) exp(KE + hM)/Z(K, h) (4) 

so that the average of any thermodynamic quantity can be evaluated as 

(A(E, M))(K,h)= ~ A(E, M) P(~,h)(E, M) (5) 
(E,M) 

The probability distribution can be found numerically, by using Monte 
Carlo simulation to generate the histogram of values of E and M. The 
histogram properly normalized is an estimate of P(K, h) for a point (K, h) 
in the parameter  space. The great advantage of the method is that the 
estimated probability distribution for a given point (K, h) can be used to 
generate the probability distribution for a different point (K',  h') in the 
parameter  space, that is, 

P(K',h')(E, M)= P(K,h)(E, M)exp[(K ' -K)E+ (h ' -h)M] (6) 
ZE, M P(x,h)(E, M) expE(K' - K)E + (h' - h )M] 

One should emphasize that the above relation is exact and any errors 
are due to the numerical determination of the number of states N(E). The 
denominator of Eq. (6) is in fact an approximation for the partition func- 

2 See refs. 19 for earlier work using the histogram method. Further discussion of the present 
method is found in ref. 20, which should also be consulted for a more complete list of work 
using the histogram method. 
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tion. Since we are interested in quantities that involve the various moments 
of the energy distribution, we shall restrict the phase space to one dimen- 
sion involving only the energy E. 

Before we report our numerical results, let us first review the main 
results of the theory of finite-size scaling at temperature-driven first-order 
phase transition, proposed by Challa et al. (1) The starting point is the 
Landau theory of thermodynamic fluctuations. (2~) In this approach the 
probability distribution P(E) of finding the system in a single phase with 
internal energy E is a Gaussian centered about the infinite-lattice energy 
E 0, namely 

A P ( E ) = ~ e x p  ( Ld(E-E~ 
~-~--~B~5- ~- j (7) 

where A is a normalization constant and C is the specific heat at 
temperature T. In the thermodynamic limit the probability distribution 
P(E) is a 6-function centered at Eo. Because of phase coexistence at a first- 
order phase transition, one can assume that the probability distribution 
P(E) is a superposition of Gaussians centered at the energies of each phase. 
Let E+ ( E )  be the internal energy at the transition in the high (low)- 
temperature phase. If the temperature is shifted by a small amount AT= 
T -  Tc, the probability distribution can be written as 

a+ P(E) =~+-+ exp [ -  [E- [E+~_~T~+ + C+ AT)]2L dlj 

+ a exp [ _  [ E -  (E_ + C_ AT)]2L d] (8t 
T K ~ -  J 

where C+ and C_ are the discontinuities of the specific heat at the critical 
temperature, that is, 

C+_ y~y+ lim C(T) (9) 

The weights a+ 
AF= F+ - F of the two phases: 

a+ = x/~_+ exp(+x)  

with 

and a_ are functions of the free energy difference 

(10) 

x=-(AF/2KBT)L d, A F = - ( E + - E  )AT/Tc 

In the special case when the transition occurs from a disordered state to a 
q-fold degenerate ordered state (as in the q-state Potts model), the expres- 
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sion for the probability distribution is identical to Eq. (8) except for 
a =q(C )a/2 e x p ( - x ) .  From Eq. (8) it is straightforward to compute the 
moments of the energy distribution. In particular, the specific heat is given 
by 

a+C++a C a+a [ ( E + - E  ) + ( C + - C  ) z jT ]2 La  CL(T) = + (11) 
a+ +a_ KBT2(a+ +a )2 

From the above expression one finds that the maximum of the specific heat 
occurs at 

Tc(L ) -  Tc K BT cln[q(C /C+)l/2] 
Tc E+ - E  

L a (12) 

where To(L) and T C are the transition temperatures of the finite and infinite 
systems, respectively. The maximum of CL behaves as 

max C +  .-~ C (E+--E)2Ld + (13) 
CL - -  4K B T 2 2 

From the above results one can see that the effect of finite size is to shift 
the temperature by an amount given by Eq. (12) and that it approaches the 
infinite-temperature value as L -d. The specific heat, on the other hand, 
diverges as L a with a slope proportional to the square of the latent heat. 
We now proceed to describe the numerical results. 

We have performed Monte Carlo simulations in the three-dimensional 
three-states Potts model at the infinite-lattice transition temperature T c-- 
1.817 +0.001 and zero magnetic field, for lattice sizes between L = 3 and 
L = 15. As initial condition we have take a configuration where all spins are 
in the same state oi = 1 and let the system evolve toward equilibrium under 
Glauber dynamics. The spins are flipped with the transition probability 
p=exp[ -AE/KBT , . ] / [1  +exp(-AE/KBTc)] ,  where AE denotes the 
change in the energy for a spin flip. 

The histogram of values of E was accumulated after discarding an 
appropriate number of Monte Carlo steps (MCS). Typical observation 
time was 2.5 x 105 to 106 MSC/spin, with the first 10 4 MCS/spin discarded 
to allow for thermalization. 

The thermodynamic quantities calculated in the present simulation are 
the specific heat per spin, calculated from the energy fluctuation: 

C/KB = ,62[ < E 2 > - < E> 21/N (14) 
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Fig. 1. Distribution of the internal energy per spin for a sequence of three temperatures and 
lattice size L = 15. 
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and the reduced fourth-order cumulant VL, defined by 

(E4) 
Vc= 1 3 (E2 )2  (15) 

For a first-order phase transition, V L takes on a value 2/3 for low and high 
temperatures, tending toward a nontrivial value of (1) 

2 l~E~-E212 
Vc L ~  3 3LE~+E2 (16) 

at To, where E+ and E are the discontinuities of the internal energy at 
the transition point. Using the estimates of Wilson and Vause (14) for the 
internal energy discontinuities E+ = -1.7831(8) and E = -1.5862(6), we 
obtain for the cumulant at Tc the value VL = 0.663. 

In Fig. 1 we show the distribution of the internal energy per spin for 
three different temperatures after about 10 6 M C S  through a 153 lattice. The 
results show a double-peak structure in a small temperature range around 
T =  1.817 which is an indication of a first-order phase transition. Another 
indication that the transition is of first order is given by the temperature 
dependence of the fourth-order cumulant V L as shown in Fig. 2. The value 
of VL at T~ as the lattice size increases approaches the infinite value of 
V L = 0.663 as obtained from Eq. (t6). In Fig. 3 the maximum of the specific 

822/62/1-2-8 
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Fig. 2. Temperature dependence of the fourth-order cumulant  for the energy for lattice sizes 
L = 7 ,  9, 11, 13, and 15. The lowermost curve corresponds to L = 7  and the uppermost to 
L = 1 5 .  
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heat is plotted against the volume of the system. Each point shown in 
Fig. 3 has been calculated from the average of ten independent runs each 
measured using 2.4x l0 s MCS/spin. The error bars estimated from the 
dispersion of C2  ax obtained by ten independent runs are about 1% or less 
and smaller than the size of the open circles. The onset of the asymptotic 
behavior, that is, the maximum of the specific heat scaling with the volume, 
as predicted by Eq. (13), is already seen for large lattice size. Since the fuly 
asymptotic behavior has not been reached for the lattices used in our 
simulation, we cannot use the data presented in Fig. 3 together with 
Eq. (13) directly to extract information about the latent heat and specific 
heat singularities at the transition point. In order to do that, we must 
include correction to scaling terms in Eq. (13). We find by using a 
nonlinear square fitting that the data are best fitted if an L-dependent 
exponential term is also added to the terms present in Eq. (13), as was 
done for the two-dimensional Potts model. (18) Figure4 shows the 
maximum of the specific heat against L along with the nonlinear best fit, 
using 

(17) 

Cv 

where 7 is proportional to the square of the latent heat, as seen from 
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Fig. 4. Plot of the maximum of the specific heat against L. The points correspond to the 
Monte Carlo simulation. The continuous line is the nonlinear best fitting using Eq. (17). 
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Eq. (13), and I is a measure of the correlation length. The best-fitted values 
for the above parameters are 

= 0.0023 • 0.0001, /~ = 12.9 _+ 2.0 

7 = -13.8 • 1.9, l =  12.8 •  

The errors above come from two sources: the statistical error in 
computing the raw data and the uncertainty in fitting by Eq. (17), with the 
latter having the largest magnitude. This gives for the latent heat 
E + - E _  =0.17 • which is in fairly good agreement with the value 
AE=0.1969(9) obtained by multilattice microcanonical simulation. ~ 
Using the results of the present simulation and the specific heat 
discontinuity found by Wilson and Vause, (14) we estimate the specific heat 
of the ordered phase as C_ = 17.4 • 2.3 and for the disordered phase as 
C+ = 8.4 • 1.8. 

In summary, we have carried out Monte Carlo simulations to study 
the three-state Potts model in a cubic lattice. The calculations show that 
the system undergoes a weak first-order phase transition. By using finite- 
size scaling, we estimate the latent heat, the correlation length, and the 
values of the specific heat at the transition for both ordered and disordered 
phases. 

The histogram technique used in the present work has been shown to 
be very useful to locate the heights and positions of narrow peaks of 
thermodynamic quantities near first-and second-order phase transitions. 
In a second-order phase transition a single Monte Carlo simulation is 
sufficient to obtain information about the thermodynamic functions over a 
range of temperature in the neighborhood of the critical point. (~8/In a first- 
order phase transition, however, this information is not readily available 
due to the breaking of symmetry at the transition point. 
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